Table of Contents

Sailor Spotlight
4-5

Leadership:
CO | CAPT Buzz Donnelly
XO | CAPT Paul Lanzilotta
CMC | CMDCM Jason Haika
PAO | LCDR David Levy
APAO | ENS Rachel McMann
Media LPO | MCC Xander Gamble
Media LPO | MC1 Woody Paschall
Media LPO | MC1 Greg Johnson

Media Department:
MC2 Kenneth Abbate
MC2 Nathan Hawkins
MC2 Adrienne Powers
MC2 Nathan Burke
MC3 Devin Kates
MC3 James Ku
MC3 James Lee
MC3 Ryan McCafian
MC3 Eduardo Otero Santos
MC3 Charles J. Soudetta III
MC3 MacAdam Weissman
MC3 Jamaal Liddell
MCSN Randy Adams
MCSN Tyler John
MCSN Erwin Miciano

Weapons for Advancement
6-9
Hometown

URBANNA, VIRGINIA

That special place

THE RACK

Proudest moment

BECOMING A RED SHIRT

Soundtrack song

WHITE TRASH # BAY

Perfect day

COOKING OUT + WATCHING FOOTBALL

Favorite food

STEAK

Dream job

STOCK BROKER
CEO of CHUBBIES SHORTS

Hobby

OLYMPIC LIFTING
Weapons for Advancement

by MC3 Eduardo Otero Santos
Charline Hawkins, everything breaks advancement exams, which can count for most Sailors comes during the four for a bachelor’s degree. two points for an associate’s degree and education also helps as Sailors can earn this way. Having some sort of continued Letters of Commendation count for one Augmentation is worth two points. Flag Ribbon count for two points. Individual Achievement Medal and Combat Action three points. The Navy and Marine Corps Commendation Medal, are worth like the Purple Heart or Navy and Marine of 20 points of your final score. Awards down into points.

battle for advancement.

between a victory in furthering a career winning strategy can mean the difference resources available and developing a evaluations. Ultimately, knowing the qualifications, awards and performance it comes to advancement, including advancement cycle.

they advanced rank during the Sept. 2016 Sailor of the ranks of E-4 to E-6 learned first, PO3.’"

and said ‘I wanted to congratulate you other. “My second class grabbed my hand drew itself on his face from one ear to the other. “My second class grabbed my hand and said ‘I wanted to congratulate you first, PO3.’”

That morning, 362 Ronald Reagan Sailors of the ranks of E-4 to E-6 learned they advanced rank during the Sept. 2016 advancement cycle.

Many factors come into play when it comes to advancement, including qualifications, awards and performance evaluations. Ultimately, knowing the resources available and developing a winning strategy can mean the difference between a victory in furthering a career in the Navy or coming up short in the battle for advancement.

According to Petty Officer First Class Charline Hawkins, everything breaks down into points.

Evaluations account for a maximum of 20 points of your final score. Awards like the Purple Heart or Navy and Marine Corps Commendation Medal, are worth three points. The Navy and Marine Corps Achievement Medal and Combat Action Ribbon count for two points. Individual Augmentation is worth two points. Flag Letters of Commendation count for one with a maximum of two points obtainable this way. Having some sort of continued education also helps as Sailors can earn two points for an associate’s degree and four for a bachelor’s degree.

However, the decisive moment for most Sailors comes during the advancement exams, which can count for up to approximately two thirds of the final score.

“You exam score is what’s going to put you over the top at the end of the day,” said Hawkins. “The highest you can score on the exam is an 80. It’s going to give you the largest amount of points.”

For Sailors like Haineswells, the test made a considerable difference.

“After work while we were underway, I just opened a book and read my chapters,” said Haineswells. “I answered the questions and when I was in the chow line, in any line, I had my cards with me (index cards with information from the manuals) or I had the manual, and just studied every time I had free time, no matter what. I would definitely recommend always studying, keep working hard and going that extra mile. For me, I got tired of just being an E-3 so I went that extra mile.”

Because of their weight, advancement exams may be considered the most crucial part of the preparation process. “Go over your bibs,” said Hawkins. “Bibs,” short for bibliographies, are a number of manuals and references Sailor can resort to when preparing for the advancement exam.

“Every rate has bibs and they’re broken down by paygrades,” said Hawkins. “Each specialty will have three different bibs which show what’s going to be on the exam. Basically, the people who write the exams reference everything on the bibs.”

Hawkins stressed the importance of studying the most recently published bibs.

Another weapon in a Sailor’s arsenal for advancement is the profile sheet.

“The profile sheet is the paperwork you receive after you take the exam,” explained Hawkins. “It shows if you passed, what you scored on your test, how many award points you had and what your score was compared to those who advanced. It breaks down every section on the exam, how many questions were on the test and how many you answered correctly. It also shows your percentile. That’s what you utilize to take your next exam.”

According to Hawkins, based on the profile sheet, Sailors can make adjustments to their studying habits and areas of focus. In other words, not being able to advance during a cycle can be an educational benefit, as opposed to a potential source of frustration.

“Make sure that if this is not your first time up, look at your previous exam and your profile sheet,” said Hawkins. “It’ll show what you did badly on. Study those sections in particular so that it boosts your knowledge.”

Additionally, Hawkins mentioned another piece of information regarding exam content: professional military knowledge.

“The last set of questions is all military knowledge-type. These questions are asked throughout everybody in that paygrade, so it’s not going to be different from specialty to specialty.”

Taking this into consideration, the strategy for Sailors to engage in study groups with others in their paygrade, regardless of job, becomes a useful approach.

Knowing the path to success and the tools for advancement in today’s Navy can help the struggle feel more manageable. And at the end of the day, knowing the weapons at your disposal and how to use them is already half the battle won.

Sailors can find current bibs—which change in between exams and are published as soon as the previous results come out—and their profile sheets for the previous exam on the Navy Advancement Center website at https://www.nko.navy.mil/group/navy-advancement-center.

Command Career Counselors are also available aboard the ship to answer questions and offer advice.
Remembering
Apollo 12

by The Naval Institute Archives
On November 19th, 1969, Cmdr. Charles Conrad Jr. and Cmdr. Alan L. Bean became the third and fourth men to walk on the moon. Conrad and Bean were members of the all-Navy crew in the Apollo 12 mission, along with Cmdr. Richard F. Gordon, Jr., the mission’s command module pilot. In the October 1972 issue of Proceedings, Midshipman Second Class Raymon Paul Wiggers, Jr., U.S. Naval Reserve, described the Apollo 12 mission in an article about the Navy’s invaluable role in the United States Astronaut Corps. This detailed history examined the importance of Navy astronauts in the success of NASA’s missions, and speculated on the fate of the space program following the achievements of the Apollo lunar missions.

The United States and, in particular, the U.S. Navy have played a major role in probing the Earth’s frontiers. It is appropriate, then, that a select team of naval officers, serving as astronauts with the National Aeronautics and Space Administration (NASA) is playing such an important part in the opening of space. In the tradition of the many Navy explorers who have preceded them, these individuals, along with their Air Force, Marine, and civilian counterparts, are contributing to the greatest outward drive men have yet undertaken.
From its inception in 1959, the Astronaut Corps has received widespread publicity, and while the program itself has often come under fire, many of the men involved have become national heroes. For they have instilled a new sense of adventure into a culture that often seems totally preoccupied with counting its fears. Over the 14-year period, the team has been comprised of 73 men, most of whom have not received the fame accorded to the more prominent spacefarers. While the American astronaut is generally thought to be an Air Force pilot, the largest percentage of U.S. spacemen come from Navy, Marine, or civilian backgrounds. Much more diversity exists in the corps of astronauts than is assumed by the uninformed observer.

Of the 73, only 39 astronauts are currently active, not including those in NASA staff positions. The ranks have been thinned in recent years by retirements, resignations and death. Seven “series” or groups of pilots and scientists have been chosen.

The first group selected, the “original seven,” were the justly famed heroes of Project Mercury. They were exclusively military test pilots, chosen for their ability to meet and overcome the unexpected. Group One consisted of three Air Force pilots: L. Gordon Cooper, Virgil I. Grissom and Donald K. Slayton; three Navy aviators: M. Scott Carpenter, Walter Schirra and Alan Shepard; and one Marine: John Glenn. All were destined to fly Mercury missions except Capt. Slayton, who was grounded by a heart irregularity, but with the recent happy news of his return to full health, he has been reinstated as a flight-status astronaut. Of the seven, two—Schirra and Shepard—were graduates of the U.S. Naval Academy.

Group Two was also selected from a pool of test pilots in 1962 when the success of the Mercury flights prompted NASA to expand its man-in-space program. Of a total of nine new trainees, three were naval officers: Charles “Pete” Conrad, James Lovell and John Young. At this time, no Marine aviators were chosen. The new Air Force astronauts included Frank Borman, James McDivitt, Thomas Stafford, a U.S. Naval Academy graduate, and Edward White. Two civilians, Neil Armstrong and Elliot See, both ex-Navy pilots were the first non-military astronauts. Armstrong had been with NASA previously in the X-15 program and was destined to be the first man to set foot on the Moon. Two from this team were Naval Academy graduates: Lovell and Stafford.

The Marine Corps was once again represented in the third group by C. C. Williams, who along with third generation trainee Charles Bassett, would die before taking part in the exploration of space. Of the 14 in this group, five—Eugene Cernan, Roger Chaffee, Richard Gordon, Alan Bean and Walter Cunningham (who resigned in 1971)—were naval aviators. William Anders and Don Eisele, both of the Air Force, were Naval Academy graduates, as was Theodore Freeman, who died in 1964. For the first time, pilots who possessed ample flight experience, but who were not necessarily test pilots, were selected. Many of the third team trainees had earned their master’s degree in a field of science or engineering. This trend toward higher education continued as later groups were added.

In 1965, the space agency took a decisive
step forward by accepting applications for astronaut training from professional scientists and engineers. Physical requirements continued to be rigid, but now each new trainee was required to have a doctorate degree in the field of engineering, medicine or the physical sciences. Although reportedly somewhat dissatisfied with the small number of Group Four candidates available, NASA chose six: one geologist, one physicist, two engineers and two doctors of medicine. The Navy (and the military as a whole) was represented by Lt. Cmdr. Joseph Kerwin, a Medical Corps officer with previous flight experience. Since selection, two of these six have resigned from the program.

Group Five included 19 pilots because at the time of selection, the program planners envisioned the need for an increasingly large number of new astronauts. The Navy’s six representatives were John Bull (who later resigned for health reasons), Ronald Evans, Thomas Mattingly, Bruce McCandless, Paul Weitz and Edgar Mitchell, who recently left NASA. Marines chosen included Gerald Carr, Jack Lousma, and Fred Haise, Jr.

James Irwin, who recently retired from NASA, Charles Duke and Edward Givens, of the Air Force, were the Naval Academy’s graduates on this team. Also, the Air Force’s Don Lind was a former naval aviator, as was civilian Vance D. Brand.

The next set of trainees, Group Six, were, like the fourth group, scientist-astronauts. All were civilian, though Karl Henize, an astronomer, held the rank of lieutenant commander in the Naval Reserve. Although 11 were selected, two have since resigned. Unfortunately, it now appears that all of the members of the sixth group, along with some pilots from the fifth, will not have the chance to fly—at least until the space shuttle is developed.

And the final group, the seventh, faces the same predicament. Originally, these fliers were aerospace research pilots assigned to the Air Force’s Manned Orbiting Laboratory project. When it was cancelled, seven of the pilots transferred to NASA’s astronaut corps. Of those who transferred, one has retired from the program. Two of the remaining men are naval officers: Robert Crippen and Richard Truly.

Despite the fact that a scientist-astronaut will not fly until the Apollo 17 mission this coming December, 13 out of the 42 remaining astronauts—about one third—are from the fourth and sixth “science” groups. In all, there are 17 civilians in the corps, along with 12 Navy, 10 Air Force, and three Marine astronauts. As the figures indicate, officers of the naval establishment form a substantial part of the whole.

Eight American astronauts have died while in the space program, but none lost his life during an actual space flight. The grimmest of all was the tragic Apollo program fire that took the lives of the first three-man crew: Grissom, White and Chaffee. White, it will be recalled, was the first American to spacewalk. Less publicized were the three plane crashes that took the lives of astronauts Charles Bassett, Theodore Freeman, Elliot See and C. C. Williams. None had yet flown in space, but See and Bassett had been designated as the prime crew for the Gemini 9 flight. Air Force astronaut Edward Givens was the victim of an automobile crash before he had the opportunity to participate in a mission.

One wonders why these naval officers and, indeed, all men involved in the astronaut team, devote themselves completely to a program which promises them no more than a single spaceflight every three or four years or (in some cases) none at all. We cannot look to the NASA press releases or the news media coverage for an answer. For, generally, the public has been given a one-dimensional view of the astronauts as a group. No other group of prominent national figures has become more stereotyped.

While conceding their coolness and courage, the public tends to picture these men as being of somewhat shallow character and rather limited creativity. To assume that these pilots and scientists are nothing more than occasionally-err ing automatons could not be farther from the truth. Indeed, the fame and honors the Astronaut Corps has won have been dearly bought; besides the day-to-day danger, there is the training, largely ignored in news media coverage, that drains both mind and body.

It is necessary to delve into the history of the manned space program to understand what role the Navy’s contribution of spacefarers has played through the last decade and a half. Three manned spacecraft projects have run their course to the present: Mercury, Gemini, and Apollo. All have been largely successful and each in turn has been bolder, more extensive and more demanding upon the crews.

Project Mercury, the first step to the moon, began its series of flights in May 1961 with the sub-orbital mission of Shepard and ended in 1963 after an additional sub-orbital test and four
succeeding orbital flights. Its main objective was to test man’s ability to exist in the space environment. Any further hopes NASA held for space exploration would hinge upon these first elementary missions.

Rear Adm. Alan Shepard holds the distinction of being the first American in space. As the pilot of Freedom 7, he was rocketed into a long ballistic arc over the Atlantic on May 5, 1961. The Air Force’s Virgil Grissom flew a similar mission the following July. On Feb. 20, 1962, Marine John Glenn entered Earth orbit as the third man to do so—afer Soviet cosmonauts Gagarin and Titov. The flights of Navy pilots Scott Carpenter and Wally Schirra followed, and Air Force flier Gordon Cooper completed the final and most demanding mission of the project in May of 1963.

Project Gemini, which followed as an extension and refinement of Mercury, was planned as the phase in which two-man crews would rehearse the techniques necessary for manned lunar landing missions. Main objectives, such as rendezvous and docking, spacewalking, changing orbits, precision re-entry, and enduring lengthy stays in space, were emphasized. In contrast to the more conservative pace of the Mercury flights, Gemini proceeded with ten missions in the span of 18 months—from March 1965 to November 1966. In this project, Navy astronauts continued to play an important role in space exploration. John Young served as Grissom’s copilot on the first Gemini mission, GT-3, and later commanded Gemini 10. Pete Conrad was pilot aboard Gemini 5 and command pilot of GT-11, with rookie Richard Gordon as his second in command. Veteran Wally Schirra returned to space as commander of Gemini 6 and James Lovell took his first trip into space aboard Gemini 7. Later, Lovell was to command GT-12. Eugene Cernan was pilot for Gemini 9.

After the terrible fire in January 1967 that caused the deaths of the first Apollo crew, the first American three-man space shot was delayed until October 1968. Although manned moon landings were planned to be achieved in this project, the first flights of the series were allotted to the testing and familiarization of the hardware. Before lunar touchdown was attempted, Apollo 7—the first manned Apollo mission—served as a test of the command service module configuration. Apollo 8 served as a mission of endurance in the lunar environment. Apollo 9 was a test of the lunar module in Earth orbit, and Apollo 10 was the final test in moon orbit. Then, with AS-11, the landings began. The first two sites were selected for their accessibility—the Sea of Tranquility and the Ocean of Storms, respectively. Starting with Apollo 13, rougher and more interesting terrain was chosen for landing targets. However, of the originally-planned 10 lunar landings, only six will now be realized because of funding cutbacks and the failure of AS-13. AS-14 was rerouted to Apollo 13’s site, the highlands North of the Crater Fra Mauro, and AS-15’s landing crew explored an area bordering the Apennine Mountains and Hadley Rille, far above the lunar equator. Returning to the moon’s middle latitudes, Apollo 16 was targeted for the highlands near the crater Descartes. Apollo 17, concluding the program, will be launched this coming December. Its site will be the Taurus-Littrow area, which is in the northeastern quadrant of the lunar Earthside.

Capt. Walter Schirra commanded the first Apollo mission, AS-7, and thus established the precedent for other Navy astronauts to play an important role in the moon flight crews that followed. James Lovell, veteran of two Gemini flights, was the command module pilot aboard Apollo 8 and spacecraft commander of the ill-fated AS-13. John Young and Eugene Cernan both flew aboard Apollo 10, and the all-Navy crew of Apollo 12 consisted of Conrad, Gordon, and Alan Bean, a Third-Group rookie. Alan Shepard returned to space after a decade, in command of AS-14, and his lunar module pilot was Edgar Mitchell of the Navy. Commander and command module pilot for the Apollo 16 shot were John Young and Ken Mattingly, respectively. Eugene Cernan and Ronald
Evans, along with civilian geologist Harrison Schmitt, will be the crew of the last Apollo flight, AS-17.

The Skylab Project, originally named more prosaically the Apollo Applications Program, will commence some four months after the return of Apollo 17. Employing a space laboratory in Earth orbit, three crews of three men each will live up to two months therein, conducting various scientific and medical investigations. The space station will be a modified third stage from a conventional Saturn V rocket. Despite the simplicity of its design, it will be about three times as roomy as the Russian Salyut orbiting lab. In April of next year, the Skylab will be boosted into orbit and if all proceeds well, the first crew will follow one day later aboard a standard Apollo Command Service Module atop a smaller Saturn launch vehicle.

The first to work inside the lab will be the all-Navy crew of Pete Conrad, Paul Weitz and the first American space doctor, Joseph Kerwin. Mission Commander Conrad will be making his fourth flight into space; his last was the Apollo 12 moon landing mission. For 28 days, the three astronauts will conduct scientific and medical experiments with the equipment carried aboard the craft. Another Apollo 12 veteran, Alan Bean, is scheduled to lead the second Skylab team on a 56-day stay soon after the first crew returns. His co-workers will be two rookies, Jack Lousma and Owen Garriott.

The third and last group will consist of three astronauts who have yet to fly in space: Marine Gerald Carr, the commander; Air Force pilot William Pogue, also from the fifth group of trainees; and engineer Edward Gibson. Like the second crew, they will stay in space for up to 56 days.

This rapid Skylab program (if all goes as planned) will be completed by the end of 1973. This project may signify the last American manned space effort until the development of the space shuttle in the latter part of this decade, for Congress has been cutting back its funding of NASA.

The shuttle, in essence, will be a manned, winged rocket which has the potential at last for opening wide extensive exploration above the atmosphere. Dramatically reduced, along with the costliness of expending a huge rocket booster for each mission, will be the danger and discomfort of conventional launchings and re-entries. Such a vehicle, which can carry passengers as does a commercial jet, which can repair defective satellites and conduct an Earth survey from orbit, which can land at a normal jet airport and be readied for relaunching, is a key to the establishment of a truly permanent space commitment. But it is not the decisive factor; as yet, the most important keys lie out of reach.

Hopes of the continuing development of the manned space program depend upon the establishment of permanent manned space stations and new, efficient, high-velocity space engines just as surely as they are tied to the reusable rocket plane.

The most accessible designs for the powerful high-thrust rocket of the future call for a system that causes the heat generated by a thermonuclear core to expand supercooled gas out of a nozzle—not unlike air escaping from the open neck of a balloon. NASA, with its limited funds, has built Earth-bound prototypes of the Nuclear Engine for Rocket Vehicle Application (Nerva). Unhappily, the space shuttle decision has swept aside most of the Nerva funding and the project proceeds at a crawl with its limited objectives.

No more promising is the outlook for the orbiting of laboratories accommodating up to 12 men. Although planners once acknowledged such space stations as a logical followup to Skylab, all now know that a long, unproductive hiatus seems to be the fate of this program for the foreseeable future.

And, of course, the moon, once the most tantalizing target in the eye of the adventurous, will probably be out of the reach of spacefarers for years to come. Although the American public apparently believed in the solemn necessity to reach the moon fast and first, it did not see fit to commit itself to much more than the initial act of superficial exploration.

Thus, the future of the Astronaut Corps seems bleak. Shuttle missions, at first, anyway, probably will be flown by the astronauts who remain—although their responsibility will dwindle. Beyond the beginning of the next decade, the mood of Congress and the public may or may not change. The 1970s may be remembered as a dry waiting period for U.S. spacefarers. The extent of the drought and whether or not it will cause this nation’s exploratory drive to wither and die cannot yet be absolutely predicted. Those pilots and scientists who have savored space at least once will have a sense of satisfaction to cling to if the public interest in the universe continues to wane. But those who have trained and waited without reward or fulfillment are likely to become increasingly bitter.

The short history of this country’s space program has been filled for the most part with clear advances and the optimism born of success. The impact of man in space and man on the moon has been felt in almost all segments of our society. The astronauts are in every sense explorers who have broadened the limits of mankind’s environment; no doubt they regard the past decade and a half as a time of hectic accomplishment but, just as surely, they must have their private doubts about the uncertain future.

The Navy men who have become astronauts have taken part extensively in the majority of America’s space flights. Their futures are less promising than before, yet these men are, by their very nature, optimists. And the optimist might view the days ahead as simply a period of pause, which will be followed by a new surge that will fulfill their most expansive dreams.

![The crew of Apollo 12 being recovered by a helicopter from USS Hornet (CV 12)](image)
The famous Shibuya Crossing, towering Sky Tree of Asakusa and massive arcades of Akihabara define the districts they reside in. Harajuku on the other hand, is arguably defined not by the buildings, but the very thing that keeps the small neighborhood alive, the fashion of the people.

Simply put, Harajuku is the fashion capital of Tokyo. Styles made popular by artists such as Kyary Pamyu Pamyu and other J-Idols were birthed in this neighborhood.

The way that the youth of Tokyo chooses to stand out varies in three key areas in Harajuku. Read on for more about the pastel colors of Takeshita Street, the ever-evolving street style and resale culture of Cat Street’s intricate spiderweb of back alleys, and the high end, high price and high exclusivity of Omotesando.

Story and photos by MC3 Ryan McFarlane & MCSN Erwin Miciano
TAKESHITA STREET
(the red brick road to the heart of Harajuku)

Takeshita street is one of two exits you can take when getting off the Yamanote line in Harajuku. Takeshita is characterized by the distinctive styles of those that inhabit the street’s busy sidewalks. Various shops and cafes litter along the narrow and crowded street, including everything from a massive 100 yen store, various dessert stands selling everything from cotton candy to crepes and a variety of specialized stores.

CAT STREET
(a spider web of back alleys)

For purposes of simplifying the article, Cat Street will also include the back alleys found in Harajuku.

While Takeshita and Omotesando are easily found, Cat Street is hidden behind the two. The entrance is found at the end of Takeshita Street. Here, directions are meaningless and almost hindering, considering that the charm of Cat Street is found in the thrill of discovery. This thrill is further continued while shopping, considering that a majority of stores in this area are used clothing stores that carry everything from the rarest of street wear to flamboyant and unique pieces.
Crepes are one of the many desserts available along the street.

It is recommended to visit Harajuku on a weekday to avoid the crowds, especially on Takeshita street.

Cost of clothes in Takeshita is cheaper compared to Cat Street and Omotesando, as they are directed towards a younger audience.

Kawaii (かわいい) “loveable,” “cute,” or “adorable.” Kawaii is a term widely used to describe the fashion and style of Takeshita.

Used clothing stores aren’t the only shops found in the back alleys of Harajuku.

From shoes to accessories, Cat Street has it all.
OMOTESANDO
(high end, high price)

Known for its numerous high end stores, Omotesando is a place that attracts shoppers from around the world.

Similar to Takeshita, Omotesando is a single strip where high end stores line the street with names like Givenchy, Saint Laurent, Gucci and more.
Get ready to spend an arm and a leg.
TWO MORE HARAJUKU PAGES

For some, climbing the enlisted ranks isn’t enough. Being an officer in the Navy comes with better pay, more privilege and a higher standard of living. While these may sound alluring to the young enlisted Sailor, there’s much more to it.

USS Ronald Reagan’s Assistant Training Officer, Lt. Thomas Franklin, from Grand Junction, Colorado, had aspirations to enter the aviation field when he was a petty officer second class. Franklin will admit he took the extra pay and benefits into consideration, but the biggest factor in his decision was motivation to have a greater impact in his career field.

“When I made the decision, the likelihood was to stay in for 20 years,” said Franklin. “I just wanted to have a higher sphere of influence.”

Franklin cautioned that the transition from enlisted to officer is a big change, and shouldn’t be taken lightly. “You have to look deep down and say, ‘what are my motivations for making the transition? Are these motivations driven by a career choice?’ If it’s all about money,” said Franklin, “I would challenge people to reconsider what their motivations are.”

Franklin found what he was looking for in the Seaman to Admiral-21 program, one of many paths to becoming an officer. If you’re a highly motivated Sailor and think you’re ready for the transition, it’s time for the next step. Read on to explore the different options and decide which one is best for you and be sure to seek out a mustang mentor to assist with any questions you may have along the way. You can also visit Ronald Reagan’s Mustang Association web page on the Gippernet at http://cvn76usv01/cvn76portal/Mustangs/default.aspx.

Officer Candidate School (OCS)

OCS is a 12-week training and indoctrination program for those who already have a bachelor’s degree. OCS graduates are appointed to ensign and have a four-year active-duty obligation. Applicants can request designation in a specific field.

Limited Duty Officer (LDO) and Chief Warrant Officer (CWO) Programs

These programs provide commissioning opportunities for chief petty officers and first class petty officers who are eligible for chief. LDO and CWO can be applied for simultaneously. A degree is encouraged, but not required. LDOs are technically-oriented officers in specific fields with strong managerial skills, while CWOs are technical specialists with extensive knowledge in an occupational field.

Requirements: Ages 19 to 42, U.S. citizenship, no courts-martial conviction, civilian felony conviction, or record of disciplinary action under the UCMJ for three years preceding application, bachelor’s degree in field of study for desired designator, commanding officer’s recommendation and completion of the Officer Aptitude Rating examination. This test has no minimum score but is highly competitive.

Requirements for LDO: U.S. citizenship, no courts-martial conviction, civilian felony conviction, or record of disciplinary action under the UCMJ for three years preceding application, eight to 16 years active duty, pay-grade E-7 to E-8, or E-6 and eligible for selection, high school graduate or GED holder, meet physical-fitness standard of “satisfactory medium” or higher at time of appointment and commanding officer’s recommendation.

Requirements for CWO: Same as LDO, except years
U.S. Naval Academy (USNA) and Naval Academy Preparatory School (NAPS)

USNA is a four-year military college that allows qualified people to earn a Bachelor of Science as midshipmen, and receive an officer commissioning upon graduation. The minimum active-duty obligation is five years.

Medical Enlisted Commissioning Program (MECP)

MECP is specifically designed to allow enlisted members to advance to commissioned status in the Nurse Corps. Selectees will participate in an academic program that leads to a degree in nursing. They still receive pay and are eligible for advancement while attending college.

Medical Service Corps In-Service Procurement Program (MSC IPP)

MSC IPP allows active duty in pay-grades E-5 to E-9 a path to officer commission, as long as they meet eligibility requirements for MSC officers. This usually requires a qualifying degree or transferable credits towards a qualifying degree. Commissioning incurs an eight-year service obligation, with three years being active duty.

Seaman to Admiral (STA-21)

STA-21 allows enlisted members to complete requirements for a bachelor’s degree and earn a commission in a specific field. It includes an eight-week course at the Naval Science Institute and full-time study up to 36 months at a Naval Reserve Officer Training Corps-affiliated university. Students receive up to $10,000 each year to pay for tuition, books and fees.

Requirements: Ages 17 to 23, U.S. citizenship, no courts-martial conviction, civilian felony conviction, or record of disciplinary action under the Uniform Code of Military Justice (UCMJ) for three years preceding application; unmarried, not pregnant, in good health with 20/20 vision, normal color perception and a minimum of 24 months obligated service on entering. Fleet applicants must obtain a nomination from the Secretary of the Navy, of which 170 can be issued each year. Applicants must also submit official SAT or ACT scores.

Requirements: Age less than 42, U.S. citizenship, no courts-martial conviction, civilian felony conviction, or record of disciplinary action under the UCMJ for three years preceding fiscal year in which selection is held, no record of drug abuse, currently serving active duty, high school graduate, SAT or ACT scores no older than three years and commanding officer’s endorsement letter.

Requirements: Age less than 42, U.S. citizenship, no courts-martial conviction, civilian felony conviction, or record of disciplinary action under the UCMJ for three years preceding application, physical examination for good health, superb performance record and commanding officer’s recommendation.

Requirements: Age less than 27 by commissioning, or 29 with a waiver, U.S citizenship, high school graduate or GED holder, able to complete a degree in 36 months, SAT or ACT scores within three years and commanding officer’s recommendation.
ABHAN (AW/SW) Candice Hunt, from Garner, Iowa, and AN Ana Flores, from Lompoc, California, assigned to USS Ronald Reagan (CVN 76), standby with a mooring line in hand as the Los Angeles-class attack submarine USS Pasadena (SSN 752) prepares to moor at Commander, Fleet Activities Yokosuka for a port visit. (Photo By MC2 Kenneth Abbate)